Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 812
Filtrar
1.
Int J Mol Sci ; 25(6)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38542293

RESUMO

Lactobacillus curvatus HY7602 fermented antler (FA) ameliorates sarcopenia and improves exercise performance by increasing muscle mass, muscle fiber regeneration, and mitochondrial biogenesis; however, its anti-fatigue and antioxidant effects have not been studied. Therefore, this study aimed to investigate the anti-fatigue and antioxidant effects and mechanisms of FA. C2C12 and HepG2 cells were stimulated with 1 mM of hydrogen peroxide (H2O2) to induce oxidative stress, followed by treatment with FA. Additionally, 44-week-old C57BL/6J mice were orally administered FA for 4 weeks. FA treatment (5-100 µg/mL) significantly attenuated H2O2-induced cytotoxicity and reactive oxygen species (ROS) production in both cell lines in a dose-dependent manner. In vivo experiments showed that FA treatment significantly increased the mobility time of mice in the forced swimming test and significantly downregulated the serum levels of alanine aminotransferase (ALT), alkaline phosphatase (ALP), lactate dehydrogenase (LDH), creatine kinase (CK), and lactate. Notably, FA treatment significantly upregulated the activities of the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), and glutathione/oxidized glutathione ratio (GSH/GSSG) and increased the mRNA expression of antioxidant genes (SOD1, SOD2, CAT, GPx1, GPx2, and GSR) in the liver. Conclusively, FA is a potentially useful functional food ingredient for improving fatigue through its antioxidant effects.


Assuntos
Chifres de Veado , Cervos , Camundongos , Animais , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Chifres de Veado/metabolismo , Peróxido de Hidrogênio/metabolismo , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Glutationa/metabolismo , Superóxido Dismutase/metabolismo , Fadiga/tratamento farmacológico , Fadiga/metabolismo
2.
Front Immunol ; 15: 1332776, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38304427

RESUMO

Importance: While the understanding of inflammation in the pathogenesis of many neurological diseases is now accepted, this special commentary addresses the need to study chronic inflammation in the propagation of cognitive Fog, Asthenia, and Depression Related to Inflammation which we name Brain FADE syndrome. Patients with Brain FADE syndrome fall in the void between neurology and psychiatry because the depression, fatigue, and fog seen in these patients are not idiopathic, but instead due to organic, inflammation involved in neurological disease initiation. Observations: A review of randomized clinical trials in stroke, multiple sclerosis, Parkinson's disease, COVID, traumatic brain injury, and Alzheimer's disease reveal a paucity of studies with any component of Brain FADE syndrome as a primary endpoint. Furthermore, despite the relatively well-accepted notion that inflammation is a critical driving factor in these disease pathologies, none have connected chronic inflammation to depression, fatigue, or fog despite over half of the patients suffering from them. Conclusions and relevance: Brain FADE Syndrome is important and prevalent in the neurological diseases we examined. Classical "psychiatric medications" are insufficient to address Brain FADE Syndrome and a novel approach that utilizes sequential targeting of innate and adaptive immune responses should be studied.


Assuntos
Doenças do Sistema Nervoso , Doenças Neuromusculares , Humanos , Doenças do Sistema Nervoso/metabolismo , Inflamação/metabolismo , Encéfalo/metabolismo , Fadiga/metabolismo
3.
J Food Sci ; 89(4): 2465-2481, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38380680

RESUMO

Camellia seed oil (CO) has high nutritional value and multiple bioactivities. However, the specific anti-fatigue characteristics and the implied mechanism of CO have not yet been fully elucidated. Throughout this investigation, male C57BL/6J mice, aged 8 weeks, underwent exhaustive exercise with or without CO pretreatment (2, 4, and 6 mL/kg BW) for 28 days. CO could extend the rota-rod and running time, reduce blood urea nitrogen levels and serum lactic acid, and increase muscle and hepatic glycogen, adenosine triphosphate, and anti-oxidative indicators. Additionally, CO could upregulate the mRNA and Nrf2 protein expression levels, as well as enhance the levels of its downstream antioxidant enzymes and induce the myofiber-type transformation from fast to slow and attenuate the gut mechanical barrier. Moreover, CO could ameliorate gut dysbiosis by reducing Firmicutes to Bacteroidetes ratio at the phylum level, increasing the percentage of Alistipes, Alloprevotella, Lactobacillus, and Muribaculaceae, and decreasing the proportion of Dubosiella at the genus level. In addition, specific bacterial taxa, which were altered by CO, showed a significant correlation with partial fatigue-related parameters. These findings suggest that CO may alleviate fatigue by regulating antioxidant capacity, muscle fiber transformation, gut mechanical barrier, and gut microbial composition in mice. PRACTICAL APPLICATION: Our study revealed that camellia seed oil (CO) could ameliorate exercise-induced fatigue in mice by modulating antioxidant capacity, muscle fiber, and gut microbial composition in mice. Our results promote the application of CO as an anti-fatigue functional food that targets oxidative stress, myofiber-type transformation, and microbial community.


Assuntos
Camellia , Microbioma Gastrointestinal , Camundongos , Masculino , Animais , Antioxidantes/farmacologia , Microbioma Gastrointestinal/genética , Camundongos Endogâmicos C57BL , Fadiga/tratamento farmacológico , Fadiga/metabolismo , Óleos de Plantas/farmacologia , Bacteroidetes , Firmicutes , Fibras Musculares Esqueléticas
4.
Scand J Med Sci Sports ; 34(2): e14571, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38389143

RESUMO

During submaximal exercise, there is a heterogeneous recruitment of skeletal muscle fibers, with an ensuing heterogeneous depletion of muscle glycogen both within and between fiber types. Here, we show that the mean (95% CI) mitochondrial volume as a percentage of fiber volume of non-glycogen-depleted fibers was 2 (-10:6), 5 (-21:11), and 12 (-21:-2)% lower than all the sampled fibers after continuing exercise for 1, 2 h, and until task failure, respectively. Therefore, a glycogen-dependent fatigue of individual fibers during submaximal exercise may reduce the muscular oxidative power. These findings suggest a relationship between glycogen and mitochondrial content in individual muscle fibers, which is important for understanding fatigue during prolonged exercise.


Assuntos
Glicogênio , Fibras Musculares Esqueléticas , Humanos , Glicogênio/metabolismo , Tamanho Mitocondrial , Fibras Musculares Esqueléticas/metabolismo , Fadiga/metabolismo , Estresse Oxidativo , Músculo Esquelético/fisiologia
5.
Cytokine ; 169: 156279, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37329818

RESUMO

PURPOSE: Diabetes is a metabolic disorder characterized by chronic hyperglycemia due to insulin deficiency and/or loss of its action. Diabetic myopathy causes functional limitations in diabetic patients. The beneficial effects of high-intensity interval training (HIIT) are widely reported. We have hypothesized that HIIT application would prevent the development of diabetic myopathy. METHODS: Male, Wistar albino rats (10 W) were randomly divided into four groups (1)Control(C), (2)Diabetes(DM), (3)Training(HIIT), and (4)Diabetes + Training(DM + HIIT). Streptozotocin(60 mg/kg) was injected for the induction of diabetes. The maximum exercise capacity(MEC) of animals was determined by an incremental load test. HIIT protocol (4 min 85-95 % MEC, 2 min 40-50 % MEC, 6 cycles, 5 days/week) was applied for 8 weeks. In the end, functional parameters, atrophy, and resistance to fatigue in soleus and EDL muscles were evaluated. IL-6, FNDC5, and myonectin levels were measured in EDL, soleus, and serum. RESULTS: We observed atrophy, fatigue sensitivity, and proinflammatory alterations (IL-6 increase) in the EDL samples due to diabetic myopathy which were not observed in the soleus samples. HIIT application prevented the aforementioned detrimental alterations. Both force-frequency response and parallelly the twitch amplitude increased significantly in the DM + HIIT group. Half relaxation time (DT50) increased in both exercising and sedentary diabetics. FNDC5 was significantly higher in the exercising animals in soleus samples. Myonectin was significantly higher in the soleus muscle only in the DM + HIIT group. CONCLUSION: Current findings show that diabetic myopathy develops earlier in glycolytic-fast-twitch fibers(EDL) than in oxidative-slow-twitch fibers(soleus). Furthermore, HIIT application prevents atrophy in skeletal muscle, increases resistance to fatigue, and has an anti-inflammatory effect. NEW FINDINGS: The current study analyzes the myokine profile and skeletal muscle function under the effect of diabetes HIIT-type exercise. We also measured maximal exercise capacity and tailored the exercise program individually according to the result. Diabetic myopathy is an important complication of diabetes yet still, it is not understood completely. Our results show that HIIT-type training would be beneficial in diabetic myopathy but further investigation is needed to understand the whole molecular mechanism.


Assuntos
Diabetes Mellitus , Treinamento Intervalado de Alta Intensidade , Doenças Musculares , Ratos , Animais , Masculino , Interleucina-6/metabolismo , Atrofia Muscular/prevenção & controle , Atrofia Muscular/metabolismo , Doenças Musculares/metabolismo , Músculo Esquelético/metabolismo , Ratos Wistar , Fadiga/metabolismo , Diabetes Mellitus/metabolismo , Fibronectinas/metabolismo
6.
J Pharmacol Sci ; 152(1): 61-67, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37059492

RESUMO

Fatigue is a serious health problem, and long-term fatigue can lead to mental illnesses and accelerated aging. Oxidative stress, which causes excessive production of reactive oxygen species, is generally thought to increase during exercise and is an indicator of fatigue. Peptides obtained by enzymatic decomposition of mackerel (EMP) contain selenoneine, a strong antioxidant. Although antioxidants increase endurance, the effects of EMP on physical fatigue are unknown. The present study aimed to clarify this aspect. We investigated the effects of EMP on changes in locomotor activity, expression levels of silent mating type information regulation 2 homolog peroxisome 1 (SIRT1), proliferator-activated receptor-γ coactivator-1α (PGC1α), and antioxidative-related proteins including superoxide dismutase 1 (SOD1), SOD2, glutathione peroxidase 1, and catalase in the soleus muscle following EMP treatment before and/or after forced walking. Treatment with EMP before and after forced walking, and not only at one or another time point, improved the subsequent decrease in the locomotor activity and enhanced the levels of SIRT1, PGC1α, SOD1, and catalase expression in the soleus muscle of mice. Moreover, EX-527, a SIRT1 inhibitor, abolished these effects of EMP. Thus, we suggest that EMP combats fatigue by modulating the SIRT1/PGC1α/SOD1-catalase pathway.


Assuntos
Antioxidantes , Perciformes , Camundongos , Animais , Antioxidantes/farmacologia , Catalase/metabolismo , Catalase/farmacologia , Sirtuína 1/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Superóxido Dismutase-1/metabolismo , Superóxido Dismutase-1/farmacologia , Estresse Oxidativo , Fadiga/tratamento farmacológico , Fadiga/etiologia , Fadiga/metabolismo , Peptídeos/farmacologia , Músculo Esquelético/metabolismo , Perciformes/metabolismo
8.
Sci Rep ; 13(1): 2949, 2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-36807596

RESUMO

The body is more prone to fatigue in a high-altitude hypoxic environment, in which fatigue occurs in both peripheral muscles and the central nervous system (CNS). The key factor determining the latter is the imbalance in brain energy metabolism. During strenuous exercise, lactate released from astrocytes is taken up by neurons via monocarboxylate transporters (MCTs) as a substrate for energy metabolism. The present study investigated the correlations among the adaptability to exercise-induced fatigue, brain lactate metabolism and neuronal hypoxia injury in a high-altitude hypoxic environment. Rats were subjected to exhaustive incremental load treadmill exercise under either normal pressure and normoxic conditions or simulated high-altitude, low-pressure and hypoxic conditions, with subsequent evaluation of the average exhaustive time as well as the expression of MCT2 and MCT4 in the cerebral motor cortex, the average neuronal density in the hippocampus, and the brain lactate content. The results illustrate that the average exhaustive time, neuronal density, MCT expression and brain lactate content were positively correlated with the altitude acclimatization time. These findings demonstrate that an MCT-dependent mechanism is involved in the adaptability of the body to central fatigue and provide a potential basis for medical intervention for exercise-induced fatigue in a high-altitude hypoxic environment.


Assuntos
Altitude , Hipóxia , Ratos , Animais , Hipóxia/metabolismo , Encéfalo/metabolismo , Fadiga/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Ácido Láctico/metabolismo
9.
Brain Res Bull ; 195: 78-85, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36804772

RESUMO

Under high-altitude hypoxia environment, the body is more prone to fatigue, which occurs in both peripheral muscles and the central nervous system (CNS). The key factor determining the latter is the imbalance of brain energy metabolism, which makes it difficult to maintain the central nervous system to send peripheral nerve impulse continuously. During strenuous exercise, lactate released from astrocytes is taken up by neurons stored for energy to maintain synaptic transmission, a process mediated by monocarboxylate transporters (MCTs) in CNS. The present study investigated the correlation among the adaptability to exercise-induced fatigue, brain lactate metabolism and neuronal hypoxia injury under high-altitude hypoxia environment. Rats were subjected to exhaustive incremental load treadmill exercise under either normal pressure and normoxic conditions or simulated high-altitude low pressure and hypoxic conditions, with subsequent evaluation of the average exhaustive time as well as the expression of monocarboxylate transporters 2 (MCT2), MCT4, the average neuronal density in the cerebral motor cortex, and the lactate content in rat brain. At the early stage of simulated high-altitude environment, the average exhaustive time and neuronal density of rats decreased rapidly, then gradually recovered to some extent with the extension of altitude acclimatization time. The expression of MCT2, MCT4 and the lactate content in rat brain also increased gradually with the extension of altitude acclimatization time. After the application of lactate transport inhibitor, the recovery of exercise capacity of rats after altitude acclimatization was quickly blocked, and the neuronal injury in the cerebral motor cortex of rats was also significantly aggravated. These findings demonstrate that MCT-dependent mechanism is involved in the adaptability of the body to central fatigue, and provide a potential basis for medical intervention for exercise-induced fatigue under high-altitude hypoxia environment.


Assuntos
Doença da Altitude , Ratos , Animais , Hipóxia/metabolismo , Fadiga/metabolismo , Altitude , Ácido Láctico/metabolismo
10.
J Biosci Bioeng ; 135(3): 167-175, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36681523

RESUMO

For the past 200 years, lactate has been regarded as a metabolic waste end product that causes fatigue during exercise. However, lactate production is closely correlated with energy metabolism. The lactate dehydrogenase-catalyzed reaction uses protons to produce lactate, which delays ongoing metabolic acidosis. Of note, lactate production differs depending on exercise intensity and is not limited to muscles. Importantly, controlling physiological effect of lactate may be a solution to alleviating some chronic diseases. Released through exercise, lactate is an important biomarker for fat oxidation in skeletal muscles. During recovery after sustained strenuous exercise, most of the lactate accumulated during exercise is removed by direct oxidation. However, as the muscle respiration rate decreases, lactate becomes a desirable substrate for hepatic glucose synthesis. Furthermore, improvement in brain function by lactate, particularly, through the expression of vascular endothelial growth factor and brain-derived neurotrophic factor, is being increasingly studied. In addition, it is possible to improve stress-related symptoms, such as depression, by regulating the function of hippocampal mitochondria, and with an increasingly aging society, lactate is being investigated as a preventive agent for brain diseases such as Alzheimer's disease. Therefore, the perception that lactate is equivalent to fatigue should no longer exist. This review focuses on the new perception of lactate and how lactate acts extensively in the skeletal muscles, heart, brain, kidney, and liver. Additionally, lactate is now used to confirm exercise performance and should be further studied to assess its impact on exercise training.


Assuntos
Ácido Láctico , Fator A de Crescimento do Endotélio Vascular , Humanos , Ácido Láctico/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Exercício Físico/fisiologia , Músculo Esquelético/metabolismo , Fadiga/metabolismo , Encéfalo/metabolismo
11.
Respir Physiol Neurobiol ; 308: 103985, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36368618

RESUMO

OBJECTIVE: Near-Infrared Spectroscopy (NIRS) analysis techniques can often be complex to perform and interpret resulting in a barrier for wide-spread clinical use. The traditional Point-by-Point analysis methodology and our Post-Exertion Rate of Reperfusion method were examined during the recovery phases following repeated bouts of physical exertion to determine the physiological processes and information captured by each methodology under normal exertion conditions (FiO2: 0.210) and when in hypoxic conditions (FiO2: 0.129). METHODS: To achieve this, a total of n = 15 participants performed 3 sets of leg extensions to failure at 70 % their maximal effort. A 1-min rest was performed following each set where the Point-by-Point analysis means were calculated at every 6-s time to recovery for a total of 10 mean values. The Post-Exertion Rate of Reperfusion examined the linear slopes for the entire 60-s. The near-infrared spectroscopy device was placed over the vastus lateralis and measure for muscle tissue oxygen saturation, oxygenated hemoglobin, deoxygenated hemoglobin, and total hemoglobin were obtained for both the Point-by-Point and Post-Exertion Rate of Reperfusion analysis. RESULTS: Post-Exertion Rate of Reperfusion slopes were significantly different between normoxia and hypoxia for muscle tissue oxygen saturation (Normoxia: 0.151-0.171; Hypoxia: 0.068-0.116), oxygenated hemoglobin (Normoxia: 0.127 - 0.134; Hypoxia: 0.045 - 0.076), deoxygenated hemoglobin (Normoxia: -0.142 to -0.152; Hypoxia: -0.054 to -0.100), and total hemoglobin (Normoxia: -0.011 to 0.0250; Hypoxia: -0.009 to 0.024). Point-by-Point analysis identified significant differences between muscle tissue oxygen saturation and oxygenated hemoglobin, but not deoxygenated hemoglobin and total hemoglobin. CONCLUSION: Point-by-Point analysis and Post-Exertion Rate of Reperfusion can each provide distinctly unique information during exertional recovery. Point-by-Point analysis was ideal for detecting the onset of change in muscle oxygen status. Post-Exertion Rate of Reperfusion identified overall rates of change and was shown to be more sensitive at identifying changes in overall recovery of skeletal tissue reperfusion rates. Point-by-Point analysis and Post-Exertion Rate of Reperfusions may be utilized individually or separately to improve the interpretability of skeletal NIRS metrics within research or clinical settings.


Assuntos
Esforço Físico , Espectroscopia de Luz Próxima ao Infravermelho , Humanos , Músculo Esquelético/fisiologia , Hipóxia/metabolismo , Oxigênio/metabolismo , Oxiemoglobinas/metabolismo , Fadiga/metabolismo , Reperfusão , Consumo de Oxigênio/fisiologia
12.
Nutrients ; 14(23)2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36501099

RESUMO

The metabolic and mechanical stresses associated with muscle-fatiguing exercise result in perturbations to bodily tissues that lead to exercise-induced muscle damage (EIMD), a state of fatigue involving oxidative stress and inflammation that is accompanied by muscle weakness, pain and a reduced ability to perform subsequent training sessions or competitions. This review collates evidence from previous research on a wide range of nutritional compounds that have the potential to speed up post-exercise recovery. We show that of the numerous compounds investigated thus far, only two-tart cherry and omega-3 fatty acids-are supported by substantial research evidence. Further studies are required to clarify the potential effects of other compounds presented here, many of which have been used since ancient times to treat conditions associated with inflammation and disease.


Assuntos
Músculo Esquelético , Prunus avium , Humanos , Músculo Esquelético/metabolismo , Exercício Físico/fisiologia , Estresse Oxidativo , Inflamação/metabolismo , Fadiga/metabolismo
13.
Lupus Sci Med ; 9(1)2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36414333

RESUMO

OBJECTIVE: Patients with SLE frequently have debilitating fatigue and reduced physical activity. Intermuscular adipose tissue (IMAT) accumulation is associated with reduced physical exercise capacity. We hypothesised that IMAT is increased in patients with SLE and associated with increased fatigue, reduced physical activity and increased inflammation. METHODS: In a cross-sectional study, 23 patients with SLE and 28 control participants were evaluated. IMAT was measured in the calf muscles using sequential T 1-weighted MRI. Patient-reported physical activity and fatigue were measured and a multiplex proteomic assay was used to measure markers and mediators of inflammation. RESULTS: IMAT accumulation (percentage of IMAT area to muscle area) was significantly higher in SLE versus control participants (7.92%, 4.51%-13.39% vs 2.65%, 1.15%-4.61%, median, IQR, p<0.001) and remained significant after adjustment for age, sex, race and body mass index (p<0.001). In patients with SLE, IMAT accumulation did not differ significantly among corticosteroid users and non-users (p=0.48). In the study cohort (patients and controls), IMAT was positively correlated with self-reported fatigue score (rho=0.52, p<0.001) and inversely correlated with self-reported walking distance (rho=-0.60, p<0.001). Several markers of inflammation were associated with IMAT accumulation in patients with SLE, and gene ontology analysis showed significant enrichment for pathways associated with macrophage migration and activation in relation to IMAT. CONCLUSION: Patients with SLE have greater IMAT accumulation than controls in the calf muscles. Increased IMAT is associated with greater fatigue and lower physical activity. Future studies should evaluate the effectiveness of interventions that improve muscle quality to alleviate fatigue in patients with SLE.


Assuntos
Lúpus Eritematoso Sistêmico , Proteômica , Humanos , Estudos Transversais , Lúpus Eritematoso Sistêmico/complicações , Tecido Adiposo/diagnóstico por imagem , Tecido Adiposo/metabolismo , Fadiga/etiologia , Fadiga/metabolismo , Inflamação
14.
Food Funct ; 13(20): 10610-10622, 2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36168843

RESUMO

Brassica rapa L., an edible, feeding and medicinal plant cultivated on the Tibetan plateau with altitudes above 3800 m, has several pharmacological effects. However, its therapeutic effects against memory impairment and central fatigue have yet to be conclusively established. In this study, the Y-maze and Morris water maze tasks revealed that Brassica rapa L. aqueous extract (BE) significantly ameliorated cognitive deficits of sleep deprivation (SD)-treated mice. Moreover, BE treatment partially alleviated SD-induced reductions in the levels of peripheral energy metabolism, and significantly decreased inflammatory factor levels in serum and hippocampus. In addition, BE treatment significantly relieved central fatigue and stabilized the excitability as well as activities of neurons by regulating the levels of hypothalamus tryptophan metabolites and striatum neurotransmitters. The neuroprotective effects of BE were also confirmed using glutamate-treated HT22 cells, whereby BE pretreatment significantly attenuated intracellular ROS production and mitochondrial depolarization via adenosine 5'-monophosphate activated protein kinase/peroxisome proliferators-activated receptors (AMPK/PPAR-γ) signaling pathways. Thus, BE might probably prevent SD-induced learning and memory deficits by inhibiting neuroinflammation and restoring mitochondrial energy metabolism in the hippocampus. These findings imply that BE is a potential complementary therapy for those suffering from deficient sleep or neurometabolic disorders, although this needs verification by prospective clinical studies.


Assuntos
Brassica napus , Brassica rapa , Fármacos Neuroprotetores , Proteínas Quinases Ativadas por AMP/metabolismo , Adenosina/uso terapêutico , Animais , Cognição , Fadiga/metabolismo , Glutamatos/metabolismo , Hipocampo/metabolismo , Aprendizagem em Labirinto , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/metabolismo , Transtornos da Memória/prevenção & controle , Camundongos , Doenças Neuroinflamatórias , Fármacos Neuroprotetores/farmacologia , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Proliferadores de Peroxissomos/metabolismo , Proliferadores de Peroxissomos/farmacologia , Proliferadores de Peroxissomos/uso terapêutico , Estudos Prospectivos , Espécies Reativas de Oxigênio/metabolismo , Privação do Sono/complicações , Privação do Sono/tratamento farmacológico , Privação do Sono/metabolismo , Tibet , Triptofano/metabolismo
15.
Acta Biochim Pol ; 69(3): 513-522, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36049068

RESUMO

In recent years, the accumulation of phosphate ions and the increase in acidity have been described as crucial metabolic fatigue-leading factors that disturb muscle fiber contractions. This fact is especially important in the context of mitochondrial dysfunctions in which excessive fatigue is one of the possible symptoms. However, little is known about the precise fatigue-inducing thresholds of work intensity in mitochondrial dysfunctions of various types and at various stages of their severity. Possible interactions of additional factors such as disturbances in electrolyte concentrations (i.e. magnesium ions) were also not precisely defined. One of the best-suited tools for this kind of problem is systems biology, which enables modeling of metabolic pathways. In this research, a computer model of working skeletal muscle was adapted. The relationship between the decrease in oxidative phosphorylation and the workload shows a linear dependence for dysfunctions that evenly disturb the activity of each element of the pathway (which is equivalent to the decrease in mitochondrial mass). In case of dysfunctions that disrupt only one element of the pathway, the relationship between fatigue threshold and exercise intensity is exponential, but with higher threshold deficiency values. Muscle phosphate levels were the most vulnerable to disruptions of complex III and ATP synthase. Surprisingly, disruptions of the ATP/ADP exchanger emerged as equally disruptive and capable of significantly increasing phosphate concentrations also in the rest state, whereas the impact of the impairment of the phosphate transporter was negligible. Perturbations in magnesium concentration also did not show a significant effect in any of these models.


Assuntos
Complexo III da Cadeia de Transporte de Elétrons , Magnésio , Difosfato de Adenosina/farmacologia , Trifosfato de Adenosina/metabolismo , Simulação por Computador , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Complexo III da Cadeia de Transporte de Elétrons/farmacologia , Fadiga/metabolismo , Humanos , Magnésio/metabolismo , Mitocôndrias/metabolismo , Proteínas de Transporte de Fosfato/metabolismo , Fosfatos
16.
Artigo em Russo | MEDLINE | ID: mdl-35981344

RESUMO

National literature on fatigue in sports related to mitochondrial activity and possible drug and non-drug correction approaches over the past 5 years was reviewed. The significance of acidosis as a factor limiting muscle activity, energy production, adenosine triphosphate utilization, and activation of lipid peroxidation was shown. The results of ultrastructure studies in the modulation of gene expression related to the characteristics of tonic and phasic muscles and a histochemical method of assessing the types of these muscle fibers are presented. Options of overtraining prevention in sports by drug and non-drug methods are evaluated.


Assuntos
Esportes , Fadiga/metabolismo , Humanos , Músculos/metabolismo , Esportes/fisiologia
17.
Compr Physiol ; 12(4): 3731-3766, 2022 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-35950651

RESUMO

The mammalian neuromuscular junction (NMJ) comprises a presynaptic terminal, a postsynaptic receptor region on the muscle fiber (endplate), and the perisynaptic (terminal) Schwann cell. As with any synapse, the purpose of the NMJ is to transmit signals from the nervous system to muscle fibers. This neural control of muscle fibers is organized as motor units, which display distinct structural and functional phenotypes including differences in pre- and postsynaptic elements of NMJs. Motor units vary considerably in the frequency of their activation (both motor neuron discharge rate and duration/duty cycle), force generation, and susceptibility to fatigue. For earlier and more frequently recruited motor units, the structure and function of the activated NMJs must have high fidelity to ensure consistent activation and continued contractile response to sustain vital motor behaviors (e.g., breathing and postural balance). Similarly, for higher force less frequent behaviors (e.g., coughing and jumping), the structure and function of recruited NMJs must ensure short-term reliable activation but not activation sustained for a prolonged period in which fatigue may occur. The NMJ is highly plastic, changing structurally and functionally throughout the life span from embryonic development to old age. The NMJ also changes under pathological conditions including acute and chronic disease. Such neuroplasticity often varies across motor unit types. © 2022 American Physiological Society. Compr Physiol 12:1-36, 2022.


Assuntos
Neurônios Motores , Junção Neuromuscular , Animais , Fadiga/metabolismo , Fadiga/patologia , Mamíferos , Contração Muscular , Junção Neuromuscular/metabolismo , Sinapses/fisiologia
18.
Development ; 149(13)2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35771634

RESUMO

Preimplantation embryos often consist of a combination of euploid and aneuploid cells, suggesting that safeguards preventing the generation and propagation of aneuploid cells in somatic cells might be deficient in embryos. In somatic cells, a mitotic timer mechanism has been described, in which even a small increase in the duration of M phase can cause a cell cycle arrest in the subsequent interphase, preventing further propagation of cells that have undergone a potentially hazardously long M phase. Here, we report that cell divisions in the mouse embryo and embryonic development continue even after a mitotic prolongation of several hours. However, similar M-phase extensions caused cohesion fatigue, resulting in prematurely separated sister chromatids and the production of micronuclei. Only extreme prolongation of M phase caused a subsequent interphase arrest, through a mechanism involving DNA damage. Our data suggest that the simultaneous absence of a robust mitotic timer and susceptibility of the embryo to cohesion fatigue could contribute to chromosome instability in mammalian embryos. This article has an associated 'The people behind the papers' interview.


Assuntos
Aneuploidia , Blastocisto , Animais , Blastocisto/metabolismo , Instabilidade Cromossômica , Desenvolvimento Embrionário/genética , Fadiga/metabolismo , Feminino , Humanos , Mamíferos , Camundongos , Gravidez
19.
Am J Physiol Endocrinol Metab ; 323(2): E171-E184, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35732003

RESUMO

Rapid oscillations in cytosolic calcium (Ca2+) coordinate muscle contraction, relaxation, and physical movement. Intriguingly, dietary nitrate decreases ATP cost of contraction, increases force production, and increases cytosolic Ca2+, which would seemingly necessitate a greater demand for sarcoplasmic reticulum Ca2+ ATPase (SERCA) to sequester Ca2+ within the sarcoplasmic reticulum (SR) during relaxation. As SERCA is highly regulated, we aimed to determine the effect of 7-day nitrate supplementation (1 mM via drinking water) on SERCA enzymatic properties and the functional interaction between SERCA and mitochondrial oxidative phosphorylation. In soleus, we report that dietary nitrate increased force production across all stimulation frequencies tested, and throughout a 25 min fatigue protocol. Mice supplemented with nitrate also displayed an ∼25% increase in submaximal SERCA activity and SERCA efficiency (P = 0.053) in the soleus. To examine a possible link between ATP consumption and production, we established a methodology coupling SERCA and mitochondria in permeabilized muscle fibers. The premise of this experiment is that the addition of Ca2+ in the presence of ATP generates ADP from SERCA to support mitochondrial respiration. Similar to submaximal SERCA activity, mitochondrial respiration supported by SERCA-derived ADP was increased by ∼20% following nitrate in red gastrocnemius. This effect was fully attenuated by the SERCA inhibitor cyclopiazonic acid and was not attributed to differences in mitochondrial oxidative capacity, ADP sensitivity, protein content, or reactive oxygen species emission. Overall, these findings suggest that improvements in submaximal SERCA kinetics may contribute to the effects of nitrate on force production during fatigue.NEW & NOTEWORTHY We show that nitrate supplementation increased force production during fatigue and increased submaximal SERCA activity. This was also evident regarding the high-energy phosphate transfer from SERCA to mitochondria, as nitrate increased mitochondrial respiration supported by SERCA-derived ADP. Surprisingly, these observations were only apparent in muscle primarily expressing type I (soleus) but not type II fibers (EDL). These findings suggest that alterations in SERCA properties are a possible mechanism in which nitrate increases force during fatiguing contractions.


Assuntos
Contração Muscular , Nitratos , Difosfato de Adenosina/metabolismo , Difosfato de Adenosina/farmacologia , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/farmacologia , Animais , Cálcio/metabolismo , Fadiga/metabolismo , Feminino , Camundongos , Mitocôndrias/metabolismo , Contração Muscular/fisiologia , Fibras Musculares de Contração Lenta/metabolismo , Músculo Esquelético/metabolismo , Nitratos/metabolismo , Nitratos/farmacologia , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo
20.
Biochem Biophys Res Commun ; 608: 59-65, 2022 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-35390673

RESUMO

Cryotherapy is one of the most common treatments for trauma or fatigue in the field of sports medicine. However, the molecular biological effects of acute cold exposure on skeletal muscle remain unclear. Therefore, we used zebrafish, which have recently been utilized as an animal model for skeletal muscle, to comprehensively investigate and selectively clarify the time-course changes induced by cryotherapy. Zebrafish were exposed intermittently to cold stimulation three times for 15 min each. Thereafter, skeletal muscle samples were collected after 15 min and 1, 2, 4, and 6 h. mRNA sequencing revealed the involvement of trim63a, fbxo32, fbxo30a, and klhl38b in "protein ubiquitination" from the top 10 most upregulated genes. Subsequently, we examined the time-course changes of the four genes by quantitative PCR, and their expression peaked 2 h after cryotherapy and returned to baseline after 6 h. Moreover, the proteins encoded by trim63a and fbxo32 (muscle-specific RING finger protein 1 [MuRF1] and muscle atrophy F-box, respectively), which are known to be major genes encoding E3 ubiquitin ligases, were examined by western blotting, and MuRF1 expression displayed similar temporal changes as trim63a expression. These findings suggest that acute cold exposure transiently upregulates E3 ubiquitin ligases, especially MuRF1; thus, cryotherapy may contribute to the treatment of trauma or fatigue by promoting protein processing.


Assuntos
Proteínas Ligases SKP Culina F-Box , Peixe-Zebra , Animais , Resposta ao Choque Frio , Fadiga/metabolismo , Fadiga/patologia , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Proteínas Ligases SKP Culina F-Box/genética , Proteínas Ligases SKP Culina F-Box/metabolismo , Proteínas com Motivo Tripartido/genética , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinas/metabolismo , Regulação para Cima , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...